文章编号: 0258-7025(2009)02-0290-04

使用格兰-泰勒棱镜偏振耦合的1kW 大功率 半导体激光器

丁 鹏 曹银花 苏国强 陈 虹 王智勇 左铁钏

(北京工业大学激光工程研究院,北京 100124)

摘要 大功率量子阱半导体激光器输出为线偏振光,而格兰-泰勒棱镜具有双折射性质,能将两种偏振方向相互垂直的光区分开。如果将格兰-泰勒棱镜反方向使用,则能将两个偏振方向的光耦合输出。使用两个中心波长808 nm,输出功率600 W的半导体激光堆栈,一个堆栈的输出光经过 1/2 波片后偏振方向旋转 90°,另一个堆栈偏振方向保持不变,经过格兰-泰勒棱镜做偏振耦合后合成一束。分别经过快慢轴准直、聚焦和慢轴消球差后输出,其中聚焦镜 *f* =100 nm。在工作电流130 A时,电光转换效率约为 43%。使用 UFF100 激光光束质量诊断仪测量,焦斑呈矩形分布,焦斑面积为0.547 mm×5.0 mm,快轴光参积 *K*_f =26.1 mm•mrad,最大输出功率1 kW,激光器系统工作稳定。

关键词 激光器;大功率半导体激光器;偏振耦合;格兰-泰勒棱镜;光参积 中图分类号 TN248.4 **文献标识码** A **doi**: 10.3788/CJL20093602.0290

1 kW High Power Diode Laser with Polarization Coupled by Gran-Tylor Prism

Ding Peng Cao Yinhua Su Guoqiang Chen Hong Wang Zhiyong Zuo Tiechuan (College of Laser Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract Output laser beam of high power quantum well diode laser is linearly polarized, and Gran-Tayor prism can distinguish two laser beams in vertical polarizing direction by its characteristic of birefringence. If the input beams are in the opposite direction of the Gran-Tayor prism, they will be coupled into one beam. The experiment takes two 600 W diode laser stacks with 808 nm centre wavelength. The polarizing direction of one beam is changed by a 1/2 wave plate, the other is unchanged, and they are polarization coupled by the Gran-Tylor prism. The laser beam propagates through fast-axis or slow-axis collimating lens, focusing lens (f = 100 mm) and slow-axis spherical aberration correcting lens. When the working current is 130 A, the electro optic efficiency is about 43%. Measured with the UFF100 laser beam diagnostics meter, the focal spot is rectangular, the area is 0.547 mm×5.0 mm, the fast-axis beam parameter product is 26.1 mm \cdot mrad, and the highest output power is 1 kW. The laser system works stably.

Key words lasers; high power diode laser; polarization coupling; Gran-Tylor prism; beam parameter product

1 引 言

大功率半导体激光技术在近几年里得到了很大的提高,其直接应用也日渐成为一个热点,如在材料

处理、抽运固体激光器、军事上的应用等^[1~3]。大功 率半导体激光器通常由若干一维阵列堆叠组成,而 每个阵列又由横向排列的许多发光单元组成。这种

基金项目:科技部国际合作项目(2002AADF3101),国家自然科学基金(60407009)和北京市自然科学基金(4042007)资助项目。

作者简介:丁 鹏(1973—),男,博士研究生,主要从事外腔提高大功率半导体激光器光束质量方面的研究。

E-mail:dingpeng211@sina.com

导师简介:左铁钏(1941—),女,教授,博士生导师,主要从事工程材料的激光加工及工业大功率激光器的开发研究工作。 E-mail:nclt@bjut.edu.cn

收稿日期:2008-04-01; 收到修改稿日期:2008-07-15

激光器的光束质量比较差,主要是因为半导体激光 工作物质的增益较高,激光模式在腔内振荡次数很 少。为提高输出功率采用了大光腔结构,使得输出 光束快慢轴光场不对称,在垂直于结平面的快轴方 向为 30°~40°(半峰全宽(FWHM)),在平行于结平 面的慢轴方向,发散半角一般为 8°~10°(FWHM); 大功率半导体激光器发光单元呈二维面阵分布,由 于填充因子的存在,进一步劣化了光束质量,限制了 其应用^[4]。因此改善半导体激光的光束质量对于大 功率半导体激光在先进制造领域的应用有着很重要 的意义。本文提出采用偏振耦合的方法,利用格兰-泰勒棱镜的性质,将两个小功率的半导体激光器堆 栈合成一束激光输出,使光束亮度提高一倍,光电转 换效率接近 50%。

2 实验原理

由天然晶体冰洲石材料制作而成的格兰-泰勒 棱镜属格兰型结构的空气隙棱镜,具有极好的抗光 损伤能力,是当前国内外激光技术和偏光技术中普 遍采用的偏光器件之一。它利用晶体的双折射性 质,能将两种不同偏振方向的光区分开来。当一束 光由空气射到各向异性晶体表面时,一般情况下,在 晶体内将产生两束折射光,这两束折射光中,其中一 束遵从折射定律,此为寻常光(o光),另一束在一般 情况下不遵守折射定律,其折射光线不在入射面内, 此为非寻常光(e光)。o光和 e 光都是线偏振光,当 入射光线在双折射晶体的主截面时,o 光的偏振方 向与 e 光的偏振方向是垂直的。利用这个性质,可 以将两束偏振方向互相垂直的线偏振光合束输出。

目前大功率半导体激光器谐振腔大多采用应变 量子阱结构,由于谐振腔对两个偏振方向的增益不 同,输出为线偏振光。对于两个输出光偏振方向相 同的半导体激光器堆栈,利用半波片将其中一个堆 栈输出光束偏振方向旋转 90°,使得两束激光偏振 方向相互垂直,分别对应于棱镜中的 o 光和 e 光,即 可实现合束输出。实验中利用格兰-泰勒偏振分光 棱镜的这一性质,采用两个600 W半导体激光堆栈 进行偏振耦合,获得1 kW的半导体激光输出。

3 实验装置

采用两个 600 W 半导体激光堆栈,两个堆栈发 出的激光均为振动方向垂直纸面的线偏振光,对应 格兰-泰勒棱镜中的 e 光,如图 1 所示。在半导体堆 栈1的光路中插入半波片,调节半波片的光轴方向, 使偏振光的偏振方向旋转90°,与棱镜的o光偏振方 向一致。根据格兰-泰勒棱镜的性质,半导体堆栈1 的激光将从棱镜透射出,而半导体堆栈2发出的光 在棱镜内的空气隙产生全反射而出,调节半导体激 光1和2的位置,使两束光在棱镜出射端完全合并 成一束,再经过慢轴准直镜、聚焦镜和消球差负透镜 输出。需要指出的是,此处使用的格兰-泰勒棱镜与 普通分光棱镜略有不同,为了提高入射效率,堆栈2 方向的入射面切割成与入射光线垂直的方向。

Fig. 1 Diode laser polarization coupling experimental device

4 实验结果分析

使用功率计测量,得到图 2 所示 *P-I* 曲线,获得 1 kW输出时电源电压为18 V,电流为130 A,光电 转换效率为 43%。

图 2 大功率半导体激光 P-I 曲线 Fig. 2 High power diode laser P-I curve

采用 UFF100 激光光束质量诊断仪在图 1 中焦 面附近不同位置对激光束进行测量,得到不同位置 处光束或者光斑半径,然后采用多点测量双曲线拟 合法计算光束特性参数。根据 ISO 光束质量标准 草案^[5],沿光束传输路径,测量 10 个位置上的光束 束宽,其中 5 个要求在一倍瑞利距离内,而且每个束 宽要测量 5 次,取其平均值,将所得参数代入二次曲 线

光

$$d^2 = A + Bz + Cz^2, \qquad (1)$$

式中d为光束束宽直径,z为光斑的位置,焦点处为 $0_{\circ}A,B,C$ 为待定系数。求得双曲线系数,根据系数计算远场发散角 $\theta(2 \beta)$ 、光参积 $K_{\rm f}$ 和束腰位置 z_{\circ}

$$\theta = \sqrt{C},\tag{2}$$

$$K_{\rm f} = \frac{\sqrt{4AC - B^2}}{8},\tag{3}$$

$$z_0 = -\frac{B}{2C},$$
(4)

实验中,共对焦点两侧的 11 点进行了测量,将实验数据代入(1)式,拟合结果为

 $d^2 = 0.4613 + 0.0247z + 0.0240z^2$, 根据(2) ~ (4) 式,求得 $\theta = 154.9 \text{ mrad}, K_f = 26.1 \text{ mm} \cdot \text{mrad}, z_0 = -0.5 \text{ mm}$ 。由于拟合函数采 用了 $y = ax^2 + bx + c$ 的函数形式,所以是将光束束 宽 d 平方后代入的。拟合曲线如图 3 所示。

实验中测量了焦点附近的11个位置的光斑,由 于大功率半导体激光器用于材料加工和制造场合,

图 3 束宽与位置关系的拟合曲线

Fig. 3 Fitting curve of beam width and its location 大多数情况要用焦点光斑和附近的离焦光斑进行加 工,所以分析了+2 mm,0 mm,-2 mm三个位置的 光斑坐标剖面图、立体图、强度截面图,如图 4~6 所 示。从图中可以看出,基本为矩形平顶结构,分布比 较均匀,但在 y 方向被测能量提高到 86%后,有一 很小的边峰,这可能是某一堆栈中的一个快轴准直 镜装配误差引起的。

图 5 焦点附近光斑立体图

Fig. 5 Three-dimensional picture of beam facula near the focal spot. (a) +2 mm; (b) 0 mm; (c) -2 mm

5 结 论

采用格兰-泰勒棱镜偏振耦合的大功率半导体 激光器,最高输出功率1 kW,电光转换效率约为 43%,激光器系统工作稳定。可以根据工作需要改 变聚焦透镜,聚焦镜焦距 f = 100 mm时,经过准直、 聚焦和慢轴消球差后输出,焦斑呈矩形分布,焦斑面 积为0.547 mm×5.0 mm。根据 ISO 光束质量标准 草案,采用多点测量双曲线拟合法计算光束特性参 数,快轴光参积 $K_f = 26.1$ mm•mrad。目前,已经 在 U74 钢轨的表面相变硬化、焊接铝合金 2024 和 7075^[6]等材料方面取得了应用,并且随着输出功率 的提高、应用光纤输出等技术,将在材料加工和制造 领域得到越来越多的应用。

图 6 焦点附近光斑强度截面图

Fig. 6 Intensity cross section picture of beam facula near the focal spot. (a) +2 mm; (b) 0 mm; (c) -2 mm

参考文献

 Guo Mingxiu, Li Jindong, Fu Wenqiang *et al.*. Kilowatt laser diode-pumped solid-state heat capacity slab laser [J]. *Acta Optica Sinica*, 2007, **27**(2):280~286
 郭明秀,李劲东,付文强等,千瓦级半导体抽运的固体热容板

条激光器[J]. 光学学报, 2007, **27**(2):280~286

2 Li Xudong, Yu Xin, Yu Junhua *et al.*. Laser diode double-endpumped acousto-optically Q-switched Nd : GdVO₄ laser with high repetition rate [J]. *Chinese J. Lasers*, 2007, **34**(4):461~ 464

李旭东,于 欣,于俊华等.激光二极管双端抽运声光调 Q 高 重复频率 Nd:GdVO₄激光器[J].中国激光,2007,**34**(4):461 ~464

3 Xu Zhang, Huiying Ye, Zhaoxin Song. Low-frequency

fluctuation in multimode semiconductor laser subject to optical feedback [J]. Chin. Opt. Lett., 2008, 6(2), $120 \sim 123$

- 4 Yang Huajun, Hu Yu, Xie Kang. Optimization design for aspheric collimation system of high-power semiconductor laser beam [J]. Chinese J. Lasers, 2007, 34(12):1607~1611 杨华军,胡 渝,谢 康. 大功率半导体激光束非球面准直系统 的优化设计[J]. 中国激光, 2007, 34(12):1607~1611
- 5 Lasers and laser-related equipments-test methods for laser beam parameters-beam widths, divergence angle and beam propagation factor:1~3 [S]. ISO11146:1999
- 6 Su Guoqiang, Wang Zhiyong, Cao Yinhua *et al.*. High power diode laser transformation hardening on U74 rail steel [J]. *Heat Treatment of Metals*, 2008, **33**(2):44~47 苏国强,王智勇,曹银花等.大功率半导体激光相变硬化 U74 轨钢的试验[J]. 金属热处理, 2008, **33**(2):44~47